오늘날 많은 IT 기업이 개발 업무의 생산성과 효율성을 높이며 시장에 더 나은 제품을 빠르게 선보이려고 애씁니다. 이로써 기업은 고객에게 더 큰 가치를 제공하려 하는데요. 특히 최근 인공지능(AI)과 머신러닝(ML)이 기록적인 속도로 발전하면서 개발 업무의 생산성과 효율성은 유례없는 방식으로 급격히 향상되고 있죠. 이는 다양한 업종의 비즈니스 운영 방식을 혁신하기도 합니다.
AI와 ML 도입은 이제 선택이 아닌 필수가 되고 있는데요. GitLab의 ‘2023 글로벌 DevSecOps 보고서 - 소프트웨어 개발의 AI 현황’에 따르면, 응답자의 83%가 ‘소프트웨어 개발 프로세스에 AI를 구현하는 일은 (업계에서) 뒤처지지 않으려면 필수적’이라고 답했습니다. 이 보고서에서 개발, 보안, 운영 전문가들은 다음 9가지 방식으로 DevOps 워크플로에 AI를 통합한다고 밝혔는데요. 이는 DevOps 워크플로에 가장 많이 활용하는 AI 기능이기도 하죠. 하나하나 살펴보겠습니다.
1. 챗봇에 질문하기
‘GitLab Duo Chat’과 같은 AI 기반 챗봇에 질문하면 관련** 코드, 텍스트, 문서에 기반해 답변**을 빠르게 얻을 수 있습니다. 이때 개발자는 업무를 수행할 때 사용하는 IDE나 플랫폼에서 빠져나와 브라우저를 열고 웹을 검색하지 않아도 되고요. 대신 기본으로 제공된 챗봇에 질문하면 업무 흐름을 방해하지 않으면서 간결한 답변을 얻을 수 있죠. 이로써 컨텍스트 스위칭(context switching) 시간도 줄일 수 있습니다.
2. 코드 테스트 제안받기
개발자는 GitLab의 Merge Request(MR)에서 AI로 코드의 테스트를 제안받아 테스트 파일을 생성할 수 있습니다. 이로써 테스트를 지속적으로 개선하고, 변경 사항의 적절한 테스트 커버리지를 확보할 수 있고요. 테스트를 계획하고 준비하는 데 걸리는 시간도 단축할 수 있습니다.
3. 코드 변경 사항 요약하기
GitLab에 커밋하거나 MR을 만들 때 AI를 사용하여 코드 변경 사항의 요약 정보를 생성할 수 있습니다. 개발자는 변경 사항을 커밋하고, 코드 리뷰를 요청하는 시간을 줄일 수 있고요. 코드 리뷰어도 코드 변경 사항의 다양한 정보를 제공받아 리뷰 시간을 절약하고 더 나은 피드백을 할 수 있습니다.